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Abstract

Light field images contain both angular and spatial in-
formation of captured light rays. The rich information of
light fields enables straightforward disparity recovery capa-
bility but demands high computational cost as well. In this
paper, we design a lightweight disparity estimation model
with physical-based multi-disparity-scale cost volume ag-
gregation for fast disparity estimation. By introducing a
sub-network of edge guidance, we significantly improve the
recovery of geometric details near edges and improve the
overall performance. We test the proposed model exten-
sively on both synthetic and real-captured datasets, which
provide both densely and sparsely sampled light fields. Fi-
nally, we significantly reduce computation cost and GPU
memory consumption, while achieving comparable perfor-
mance with state-of-the-art disparity estimation methods
for light fields. Our source code is available at https:
//github.com/zcong17huang/FastLFnet.

1. Introduction
Disparity estimation from light fields has become a

promising way to derive disparity information with the arise
of consumer-level light field cameras [20, 24]. Many algo-
rithms have been proposed to estimate disparity maps from
the light field images [25, 12, 9, 29].

With the progress of the artificial neural network, the
learning-based algorithms are proposed [14, 3, 33, 28, 29,
26] and greatly improve the performance of disparity es-
timation. Considering the high-dimensional essence of
this problem, 3D CNN architecture is widely used to han-
dle the space-disparity representation for higher accuracy
[14, 3, 29]. However, the extremely high computational cost
and huge GPU memory consumption bring lots of difficul-
ties to train and deploy the model in practice. Although
several fast disparity estimation methods [28, 8, 31] have
been proposed, they suffer from the loss of accuracy.
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Figure 1. Comparison in performance and efficiency of light field
disparity estimation algorithms.

In this work, we propose a fast and lightweight end-to-
end deep architecture without using any 3D CNN modules
for estimating disparity maps from light field images. Tak-
ing into account that different views of light fields have dif-
ferent disparity scales, we design a physical-based multi-
disparity-scale cost aggregation module for efficient cost
regularization. The proposed method can save computation
and memory cost while providing pyramidal disparity infor-
mation for better accuracy and robustness.

Abandoning the 3D CNN architecture may deteriorate
the results in challenging regions with fine structures and
detailed textures, thus an edge guidance sub-network is pro-
posed to preserve subtle details by integrating edge informa-
tion into the main network. The edge maps can highlight the
regions where fine structures and detailed textures should
be given more attention to, and guide the network handling
these regions specially to achieve better results. Based on
the edge-guided multi-disparity-scale cost aggregation, the
proposed network could achieve competitive performance
with the state-of-the-art methods with much faster comput-
ing speed and lower GPU memory consumption, as shown



in Fig. 1. In summary, the main contributions are as follows:
• We propose a fast and lightweight end-to-end network

for light field disparity estimation.
• We present a physical-based multi-disparity-scale net-

work for fast and high-performance cost volume regulariza-
tion.

• We design an edge guidance sub-network to guide the
disparity estimation with edge cues for better performance
on challenging regions.

• We achieve competitive performance on par with state-
of-the-art methods for both densely and sparsely sampled
light fields while significantly reducing the computation
cost and GPU memory consumption.

2. Related Work
Recently, with the development of neural network-

s, learning-based methods achieve state-of-the-art perfor-
mances. Tsai et al. [29] propose to take all sub-aperture
light field images as input to build a cost volume [14, 34]
for regularization, which could get accurate disparity esti-
mation. However, this method utilizes 3D CNN architecture
for disparity regression, thus leading to heavy computation-
al cost and huge GPU memory consumption.

Heber et al. [5, 6] used an artificial neural network to
process the EPIs for the first time. They proposed an end-
to-end deep network consisting of a U-shaped encoder and
decoder to extract geometric and disparity information from
light field images. Immediately afterward, Shin et al. [27]
proposed a fully convolutional neural network [16] by con-
sidering the light field geometry for disparity estimation as
well as a unique method to augment the light field images
for training. However, these approaches are not robust e-
nough to noise and cannot perform well in real-world data,
and these EPI-based methods are not well suited for sparse
light fields either.

Downsampling is useful to increase the receptive field
while reducing computation. But at the same time, due to
the loss of resolution, the performance in fine-grained de-
tails is sacrificed. Multi-scale aggregation has been proven
to improve accuracy and reduce computation cost and GPU
memory. GCNet [14] proposed an encoder-decoder archi-
tecture to get around the computational burden while pre-
serving accuracy. Similarly, to learn more context infor-
mation, PSMNet [3] used a stacked hourglass architecture
in conjunction with intermediate supervision for cost vol-
ume regularization. SSPCV-Net [32] fused the cost volumes
from the lowest level to the higher ones in a recursive way.
AANet [33] constructed multi-scale cost volumes by corre-
lating features at corresponding scales and proposed Intra-
Scale Aggregation and Cross-Scale Aggregation modules
of 3 pyramid levels for cost aggregation. However, these
methods handled the cost volume as a 4D volume general-
ly, downsampling both the spatial and disparity dimensions

without distinction, which may greatly reduce the accura-
cy. Considering the physical structure of light field images,
the cost volumes obtained from views with different lengths
of baselines have different disparity scales. Therefore, for
light field disparity estimation, the physical-based multi-
disparity-scale cost aggregation can better adapt to the in-
trinsic structure of light fields and achieve more accurate
estimation results with less computation cost.

Recently, edge information is proposed to effectively im-
prove the performance of various computer vision tasks
[17, 1, 18, 35]. Inspired by these methods, we introduce
edge guidance to the multi-disparity-scale cost aggregation
to guide the disparity estimation with edge cues and further
improve the performance.

In all, in this paper, we propose a fast and light-weight
end-to-end network based on edge-guided multi-disparity-
scale cost volume aggregation to realize elegant perfor-
mance on both estimation accuracy and computation cost.

3. Methodology
In order to estimate disparity maps for both densely

and sparsely sampled light field images with a low com-
putation cost and GPU memory consumption, we propose
FastLFnet, a fast light-field disparity estimation network
that can not only produce accurate estimations but also sig-
nificantly speed up inference. The overview of the architec-
ture of FastLFnet is illustrated in Fig. 2. Considering the
redundancy of light field images, instead of using all sub-
aperture images as input, we only use sub-aperture images
along with two cross directions, i.e. horizontal and vertical
of the center-view image, to estimate the disparity for re-
ducing the computational cost as much as possible. Views
at the same angular distance from the center view have the
same disparity scale and are classified as a type of anchor,
while different kinds of anchors are marked with different
colors in Fig. 2. Details are discussed in this section.

3.1. Feature Extraction For Edge Guidance
As shown in Fig. 2, the input images are fed into the

feature extraction module to produce an effective feature
representation. Here we use basic residual blocks [4] for
extracting reliable features and in the deep layers, we use
convolutions with a stride of 2 for downsampling. Feature
maps are downsampled to four scales followed by a bilinear
interpolation to upsample these features of different scales
to the original size. Then the features of different levels are
concatenated and fed into a fusion layer for multi-level fu-
sion. Before the final output of the feature extraction mod-
ule, we pass the feature maps through a BAM module [22]
to add attention to regions that are important for matching.

We propose to utilize an attention mechanism with the
edge information extracted from the center view image to
guide the network to focus more on fine structure and edge
details. Specifically, we propose to extract edge features



Center View

U
psam

ple

Cat BAM

Anchor 1

BAM

BAM

Shared Weights

EFE Module

Cost 4

Cost 1

1
1 Conv

MCA Module

Cat

Cat

Edge Feature
Edge Map

Regression

Aggregated
Cost Volume

Disparity Map

2D CNN Resblock

Extracted
Feature

Extracted
Features

Extracted
Features

Cat Concatenate

U
psam

ple
U

psam
ple

Feature Extraction Module

M
ean

M
ean

Correlation

Anchor 4

Center View

Anchor 1

Anchor 2

Anchor 3

Anchor 4

Bottle

Cost 1

Up

BottleBottle

Bottle

Bottle

Up

Up

Bottle

Bottle

Up

Up

Bottle Up

Bottle Bottle

Bottle Layers

Edge Feature

3
3 Conv

3
3 Conv

3
3 Conv

1
1 Conv

Sigm
oid

Cat

EFF Module
Cost 2

Cost 3

Cost 4

Bottle UpBottleneck 
Block

2D Convolutions with Increasing 
Number of Disparity Channels Bottle Layers 4 layers of 

Bottleneck Block
MCA Module

3
3 Conv

Extracted Features
Edge Feature

Disparity
Edge Map

Sobel Input
Edge Map

Basic Blocks

3
3 Conv

3
3 Conv

3
3 Conv

1
1 Conv

Sigm
oid

EFE Module

Basic Blocks

3
3 Conv

2-streams Light Field Input

Figure 2. Overview of the proposed FastLFnet, the overall FastLFnet is at the top right of the figure. The 2-streams light field input
representation is at the top left of the figure, while the EFE module and MCA module are at the bottom.

with the edge feature extraction (EFE) module from the cen-
ter view image and the extracted edge feature maps are then
integrated into a pixel-wise edge feature fusion (EFF) mod-
ule to guide the disparity estimation (refer to Sec. 3.2 for
details). As shown in Fig. 2, an initial edge map is obtained
from the center image with the Sobel edge detection oper-
ation [10]. Since the multi-level features from the feature
extraction module carry rich structural information which
is significant to the generation of disparity edge map, these
representations with the same spatial resolution are fed in-
to the EFE module (refer to the supplementary material for
network details). We use the basic residual blocks to extract
higher-level features and get the output edge features. The
output edge map is produced by a 1 × 1 convolution layer
and Sigmoid function.

The proposed edge guidance sub-network is effectively
and efficiently combined with the main network of disparity
estimation. On the one hand, the EFE module directly uti-
lizes the feature maps from the feature extraction module as
a prior, which can largely reduce the parameters and com-
putation cost and can in turn impact the main network when
training. On the other hand, we integrate the obtained edge
feature maps into the EFF module to produce an adaptive
weighted attention cost, which is fused with the aggregated
cost volume to guide the disparity estimation.

3.2. Multi-disparity-scale Cost Aggregation
To aggregate the cost volume from different views, the

extracted feature maps at different disparities are common-

ly concatenated to 4D (height × width × disparity ×
feature size) and 3D convolutions are required [14],
which is computationally expensive and requires large G-
PU memory. To overcome these problems, we calculate the
cost volume while eliminating the feature dimension as in
[19], i.e.

C (d, h, w) =
1

N
⟨Fc (c, h, w) , fwarp [Fs (c, h, w) , d]⟩ , (1)

where fwarp [·, ·] denotes the warp function to warp the sur-
round feature Fs to the center feature Fc for a given dispar-
ity level d. ⟨·, ·⟩ denotes the inner product along the fea-
ture dimension and N is the channel number of extracted
features. C(d, h, w) is the cost for aggregation at spatial
location (h, w) and disparity level d.

To take into consideration that the views of different an-
chors have different disparity scales, we propose a strategy
of pyramid cost volumes to construct costs of different dis-
parity scales for each kind of anchor. With views of the
same anchor, the corresponding number of costs are first
constructed, and then perform a mean operation, resulting
in one output cost for each anchor. Specifically, defining
the maximum disparity of the innermost views as dmax, the
disparity range of the innermost views is [−dmax, dmax],
resulting in the disparity level of 2 ∗ dmax + 1. As for the
outermost views, the disparity range is [−4dmax, 4dmax],
i.e., the disparity level of 2 ∗ 4dmax + 1, leading to a more
precise disparity shift. Here, the maximum disparity refers
to the maximum absolute value of the disparity of the view,
and the disparity level refers to the number of discrete dis-



1-stream 2-streams 4-streams
Channel Numbers F4 F8 F16 F32 F4 F8 F16 F32 F4 F8 F16 F32

MSE x100 1.902 1.705 2.068 1.955 1.756 1.546 1.218 1.653 1.815 1.523 1.437 1.476
Running time / s 0.162 0.212 0.357 0.804 0.256 0.354 0.593 1.438 0.416 0.592 1.065 2.591

GPU Memory / GB 1.605 1.745 1.911 2.773 1.695 1.877 2.107 3.305 1.821 2.127 2.649 4.349
Parameters / M 0.267 0.489 1.366 4.854 0.267 0.489 1.366 4.854 0.267 0.489 1.366 4.854

Table 1. Ablation results on the HCI benchmark for different sub-sets of views and channel numbers of features.

parities in the interval from the minimum disparity (nega-
tive) to the maximum disparity (positive).

Having obtained cost volumes of different disparity s-
cales, we propose a layer-by-layer multi-disparity-scale cost
aggregation architecture to integrate these pyramid cost vol-
umes. Detailed structure is illustrated in the MCA mod-
ule of Fig. 2. To fuse the disparity dimensions of different
views, our proposed architecture integrates the cost volumes
layer by layer, and finally obtains one output cost that ag-
gregates cost volume information of different scales. From
coarse to fine scale, our method aggregates the feature in-
formation along the disparity dimension as well as spatial
dimension to improve precision and accuracy.

Furthermore, we propose a pixel-wise edge feature fu-
sion (EFF) module to utilize the edge-attention-guided
mechanism to guide each pixel in the aggregated cost vol-
ume to learn its own weight. After getting edge feature
maps from the edge feature extraction (EFE) module, we
concatenate these two features and then process them with
three layers of 3×3 convolution and one layer of 1×1 con-
volution. The second layer of 3×3 convolution reduces the
number of channels to the same as the aggregated cost. We
adopt the sigmoid function to weight the cost with edge
guidance. The guided cost volume is obtained through:

Cd,h,w = (1 +Wd,h,w)⊙ C′
d,h,w, (2)

where C ′
d,h,w is the aggregated cost volume and Cd,h,w is

the output cost that has been guided. Wd,h,w represents the
weighted attention map to guide the cost volume to focus
more on edge details. ⊙ denotes element-wise multiplica-
tion. At last, the output from the pixel-wise EFF module is
regularized by 4 layers of bottleneck [4].

3.3. Disparity Regression and Loss
We utilize soft argmin operation as in [14] for disparity

regression to estimate the continuous and precise disparity
maps. First, we use the softmax operation σ(·) to calculate
the probability for a probability volume. The final predicted
disparity d̂ is then calculated as the sum of each disparity d
weighted by its normalized probability, i.e.

d̂ =

Dmax∑
−Dmax

d× σ (Cd) , (3)

where Dmax denotes the maximum disparity of the out-
ermost views and Cd is the predicted cost of the disparity
d. This regression is more robust than classification-based
methods with sub-pixel precision.

For our method that can perform disparity estimation
and edge guidance simultaneously, we propose a three-step

training strategy. First, we train our FastLFnet without edge
guidance to get coarse results. We adopt the smooth L1 loss
function for the first step of training which has low sensitiv-
ity to outliers. The disparity loss Ldisp is defined as

Ldisp

(
d, d̂

)
=

1

M

∑
(i,j)

smoothL1

(
di,j , d̂i,j

)
, (4)

where M is the number of pixels to be predicted, d is the
ground-truth disparity, and d̂ is the predicted disparity.

In the second step, we combine the edge guidance sub-
network with the feature extraction module while fixing the
weights of other parts of the network. We only input the
center view of the light field images and due to the lack of
edge map labels of the corresponding ground-truth dispari-
ty, we manually mark out the edge maps on the dataset for
training. We use weighted BCE loss LBCE to supervise the
predicted edge maps and the weights are defined as

α = λ ·
∣∣Y +

∣∣
|Y +|+ |Y −| , β =

∣∣Y −∣∣
|Y +|+ |Y −| ,

(5)

where α and β denote weights for negative and positive
samples. Y + and Y − denote positive sample set and nega-
tive sample set respectively. λ controls the weight of posi-
tive over negative samples.

Finally, the whole FastLFnet is jointly trained together.
Because of the second step of training, our network has been
able to predict the edge information of the disparity map.
To get better performance in edge structures, we define an
edge loss Ledge, which is effective guidance for disparity
estimation:

Ledge (e, ê) =
1

M

∑
(i,j)

smoothL1 (ei,j , êi,j) , (6)

where e is the edge map of the ground-truth disparity,
and ê is the edge map of the predicted disparity. Edge
maps are calculated by the Sobel edge detection opera-
tion. Hence the overall loss at this step is defined as
L = Ldisp + λbLBCE + λeLedge, where λb and λe are the
weights for balancing different loss terms.

4. Experiments
In this section, we first introduce the datasets and de-

scribe experimental settings. The ablation studies are con-
ducted to evaluate the contribution of proposed modules.
Finally, we demonstrate our method with both quantitative
and qualitative results by comparing it with state-of-the-art
methods on both synthetic and real-world light fields.



Backgammon

Boxes

Dino

Sideboard

Ground truth CAE [21] PS RF [11] RPRF-5 [8] EpiNet-7 [27] EpiNet [27] LFattNet [29] Ours

Figure 3. Qualitative results of our method and other compared methods. For each scene, the image in the lower-left corner represents
the center-view image of input light fields. The first rows are the estimated disparity results and the second rows show the corresponding
absolute error maps (bright color denotes large errors).

4.1. Dataset
4D light field dataset [7] A synthetic dataset with 28
carefully designed scenes. The scenes are composed of
various challenging objects and structures, and partitioned
into four subsets: Stratified, Test, Training, and Additional.

Each light field has a spatial resolution of 512×512 and
an angular resolution of 9×9 with a disparity range [-4, 4]
pixels, while most disparities lie within the range of [-1.5,
1.5] pixels. In our experiment, we randomly sample 32×32
gray-scale patches for training, use the data augmentation



Processing methods One Scale w/o BAM w/o Edge FastLFnet

MSE x100 1.650 1.492 1.844 1.218

Running time / s 0.725 0.582 0.576 0.593

GPU Memory / GB 2.323 2.103 2.189 2.107

Parameters / M 1.281 1.361 0.982 1.366

Table 2. Comparison of the contributions of each component we
proposed.

strategy and exclude non-diffuse reflection and refraction
regions as in [27]. We use the subset of Additional for
training and the others for validation and testing.
Sparse light field dataset [26] A sparsely sampled
synthetic light field dataset with large baselines between
views. The dataset contains 53 scenes with a large dis-
parity range, i.e. within the interval of [-20, 20] pixels,
which is comparable to the real captured light fields with
camera arrays. The scenes contain textureless background,
specular reflection, diffusion and object occlusion. Each
light field has the same spatial resolution (512×512), and
angular resolution (9×9) as those in the 4D Light Field
Dataset [7]. Because of the large disparity range, we crop
the images to size H = W = 128 during training, and use
four scenes (Bear, Two vases, Surfboard and Robots) for
validation, four scenes (Furniture, Lion, Toy bricks, and
Electro devices) for test and the others for training.

4.2. Implementation Details
The proposed network is implemented with PyTorch

platform [23] and Adam [15] (β1 = 0.9, β2 = 0.999) is used
as optimizer. We trained our model end-to-end for 40000
iterations with a batch size of 16 for the second step and a
batch size of 8 for the others. The initial learning rate was
set to 0.001 and was decayed by multiplying 0.2 for the sec-
ond step and decayed by multiplying 0.5 for the others every
other 10000 iterations. The loss weights in the third step of
training are set to λb = 100 and λe = 2.2 respectively. The
parameter λ in loss LBCE is set to 1.1. The whole training
process takes about 17 hours with one Nvidia 2080Ti GPU.

Methods
CAE
[21]

PS RF
[11]

RPRF-5
[8]

EpiNet-7
[27]

EpiNet
[27]

LFattNet
[29]

w/o
Edge

Fast-
LFnet

Boxes 8.162 8.771 10.333 6.042 5.845 3.869 5.658 4.260
Cotton 1.704 1.227 0.949 0.206 0.235 0.220 0.318 0.339
Dino 0.376 0.730 0.603 0.162 0.147 0.090 0.350 0.184

Sideboard 0.860 1.899 1.224 0.814 0.794 0.518 1.070 0.742
Backgammon 4.762 5.559 3.024 1.500 1.893 1.762 2.658 1.488

Dots 4.589 7.881 20.114 1.155 1.549 0.959 4.508 3.070
Pyramids 0.047 0.043 0.042 0.008 0.007 0.004 0.010 0.018

Stripes 3.171 0.905 8.643 0.265 0.264 0.220 0.854 0.231
Average 2.959 3.377 5.616 1.269 1.342 0.955 1.928 1.291
Fattening 7.614 6.597 5.262 4.702 4.990 3.810 5.752 4.300
Thinning 1.153 2.237 2.568 1.548 1.430 2.230 3.499 2.427

Running time / s 832.081 1412.623 12.498 1.976 2.041 5.862 0.611 0.624
GPU Memory / GB - - - 4.319 5.103 10.953 2.189 2.107

Parameters / M - - - 5.116 5.118 5.058 0.982 1.366

Table 3. Quantitative comparison (i.e., MSE x100) with other
state-of-the-art methods on the 4D Light Field Dataset [7]. The
best and secondary results are indicated by bold and italic text re-
spectively.

4.3. 4D Light Field Dataset
Ablation studies First, we conduct experiments to evalu-
ate the trade-off between performance and efficiency on the
4D Light Field Dataset. Here we use three different sub-sets
of views of light field images as input, i.e. 1-stream (hor-
izontal), 2-streams (horizontal and vertical), and 4-streams
(horizontal, vertical, and diagonal). Additionally, we evalu-
ate the impact of the channel number of extracted features.
For each input stream, we use four different channel num-
bers (4, 8, 16, and 32) for comparison. As shown in Tab.
1, incorporating more views or a larger feature number im-
proves the performance while at the cost of much higher
computational cost. Meanwhile, simply increasing the fea-
ture number may lead to overfitting problems. Using fewer
views or smaller channel number reduce computation cost
and GPU consumption, while the accuracy of results drops
accordingly. By taking both the performance and efficiency
into consideration, we choose the network with 2-streams
input and 16 channels, which performs elegantly well with
relatively high efficiency.

Then, we conduct ablation studies to compare a num-
ber of different model variants for FastLFnet on the 4D
Light Field Dataset, so that the importance of the two key
contributions of the proposed method, i.e., edge guidance
sub-network and multi-disparity-scale cost aggregation, can
be evaluated. In addition, we also evaluate the effective-
ness of the BAM module on the performance of the net-
work. The comparison results are shown in Tab. 2 and we
can clearly justify our design choices for FastLFnet. Here,
MSE x100 denotes 100×Mean Square Errors (MSE). The
proposed edge guidance sub-network provides edge cues
to refine object details for more accurate estimation result-
s. Multi-disparity-scale cost volumes and the proposed cost
aggregation architecture can bring more useful information

Figure 4. Visual comparisons of ablation study to show the con-
tribution of each component of the proposed FastLFnet. From top
to bottom and left to right: Center view, Ground truth, FastLFnet,
One Scale, w/o BAM and w/o Edge. Our integrated FastLFnet
produces sharper and better results in thin structures and edge de-
tails.



and greatly improve the performance of disparity estima-
tion with relatively lower computational cost. Besides, the
attention mechanism of the BAM module helps to improve
the overall disparity estimation without much extra compu-
tation overhead.

To qualitatively analyze the importance of each compo-
nent of our FastLFnet, we further show the results of differ-
ent ablation setting upon the Stripes scene of the 4D Light
Field Dataset in Fig. 4. As can be compared, utilizing cost
aggregation with only one-disparity-scale leads to poor per-
formance, and the disparity of the low contrast stripes is
of bad effect, which further demonstrates the essential role
of MCA in improving the estimation accuracy. Besides,
through comparison, it could be found that the BAM mod-
ule can help to improve the disparity accuracy in occlusion
boundaries. It can be seen that with the integration of edge
information, the disparity results of fine structures and tex-
tureless regions are recovered with much sharper details.
The qualitative comparison further demonstrates the effec-
tiveness of the proposed network structure.

Comparison with state-of-the-art methods We com-
pare the performance of our FastLFnet with both tradi-
tional and learning-based state-of-the-art methods (CAE
[21], PS RF [11], RPRF-5 [8], EpiNet-7 [27], EpiNet [27],
LFattNet [29]) for light field disparity estimation. We
use two subsets (Training and Stratified) on the 4D Light
Field Dataset and compare the performance by MSE. Since
EpiNet [27] does not use zero-padding, their results lose 11
pixels at each border. Therefore, for a fair comparison, the
margins of 11 pixels are cropped for all the methods in Tab.
3, which is also used in [26]. (This explains that the results
of our method in Tab. 3 are slightly different from those in
Tab. 1 and Tab. 2.).

As shown in Tab. 3, our method completely outper-
forms the first three methods for all the scenes in terms
of MSE x100 with a large margin and performs compara-
bly with the other state-of-the-art methods [27, 29]. The
comparison of MSE and computational cost of these meth-
ods are summarized in Tab. 3. For a fair comparison, the
learning-based methods are all tested on an NVIDIA GTX
1080Ti GPU and here we use the average running time in
all 12 scenes of 3 subsets (Stratified, Test, and Training) on
the 4D Light Field Dataset. As shown, our method requires
much less inference time and GPU memory, while at the

Light fields
MSE

EBSM [9] OHLF [13] SflfNet [6] EpiNet [27] DslfNet [26] FastLFnet
Furniture 0.37 1.94 9.18 1.73 0.42 0.17

Lion 0.10 0.87 1.59 3.41 0.09 0.05
Toy bricks 0.22 1.10 3.70 0.36 0.57 0.16
Elec dev 0.20 0.63 7.82 0.74 0.20 0.09
Average 0.22 1.14 5.57 1.56 0.32 0.12

Table 4. Results of the performance comparison on the Sparse
Light Field Dataset in terms of MSE.

Electro devices Furniture

Lion Toy bricks

Figure 5. Qualitative results comparison with [26] on the Sparse
Light Field Dataset. For each scene, the second row represents the
results of [26] and the third row shows our performance.

same time with a comparable disparity estimation accuracy.

In addition, for more evaluations on occlusion and edge
regions, we apply Fattening and Thinning metrics, i.e., the
fraction of false foreground/background pixels (see [7] for
details), of scene Backgammon to evaluate the accuracy of
results on occlusion boundaries between background and
foreground. The proposed method also achieves compara-
ble results with others. For more results and discussions of
edge and discontinuity regions, please refer to the supple-
mentary material.

For visual comparison, we show the disparity estimation
results of different methods on four scenes of the 4D Light
Field Dataset in Fig. 3. For each method, we show the esti-
mated disparity maps and the corresponding absolute error
maps. Combined with the error maps, we can see that in
areas with fine structures and rich edge details, as the grid-
s in Boxes, jagged foreground plane in Backgammon, and
jagged edges of the table in Sideboard, our method performs
comparably with the state-of-the-arts.



(a) Center view (b) DslfNet [26] (c) EpiNet [27] (d) LFattNet [29] (e) Ours

Figure 6. Qualitative results of real-world light field images. The dataset is provided by [2] and [30]

4.4. Sparse Light Field Dataset
Most of the existing light field depth estimation methods

[27, 31, 6] mainly focus on the densely sampled light fields,
like 4D Light Field Dataset [7], and few of them can handle
the sparsely sampled ones. We hereby experimentally prove
that our proposed method can not only obtain competitive
results for densely sampled light fields but also achieve ele-
gant performance in the sparse light fields dataset [26].

The large disparity range leads to huge 4D cost volumes,
so the 3D-CNN-based methods [29] cannot be applied in
the sparse cases directly for their excessive GPU memory
demand. We compare our method with those without 3D
CNNs, e.g., Bayesian-based EBSM [9], EPI-based EpiNet
and SflfNet [27, 6], and optical-flow-based OHLF and D-
slfNet [13, 26]. Our model uses 9 sparsely sampled views
of sparse light field images for comparison. The quantita-
tive comparison results of 4 scenes are shown in Tab. 4,
and we compute MSE for evaluation. We can see that the
proposed method achieves much better results than others.

The qualitative results are shown in Fig. 5. For each
scene, the top row represents the center view image and the
disparity ground truth, and the second and third rows show
absolute error maps (left) and disparity maps (right) of [26]
and our method respectively. As shown in Fig. 5, the pro-
posed method achieves more accurate results, especially in
fine structures and edge details, demonstrating the superior-
ity of our method on not only dense light field data, but also
sparse light field data.

4.5. Real-world Results
Challenging real captured datasets usually suffer from

deep discontinuities, blurred scenes and various noises
problems. To evaluate the performance of the proposed

network on real captured light fields, we directly use the
model trained on the 4D Light Field Dataset and test our
method on the real-world light field images captured by a
Lytro Illum camera [2], and the (New) Stanford Light Field
Archive [30]. We compare our results with [26], [27] and
[29]. Some results are shown in Fig. 6. As shown, our
method performs elegantly well and the estimated disparity
is comparable or even better than the other methods, further
demonstrating our method.

5. Discussions and Conclusions
To reduce the computational complexity, we abandon the

3D CNN architecture, leading to more errors at discontinu-
ous regions. Although the proposed edge guidance mecha-
nism greatly improves the MSE performance, the results on
some other metrics like Thinning are still not particularly
good. This could be improved by introducing specifical-
ly designed network modules and corresponding loss func-
tions in the future.

In this paper, we propose a fast and lightweight end-to-
end deep architecture for estimating disparity maps from
light field images. A multi-disparity-scale cost aggrega-
tion module is proposed to regularize the cost volume ef-
ficiently, and an edge-based guidance sub-network is pro-
posed to further improve the performance on the challeng-
ing regions with fine structures and detail textures. The
method achieves competitive performance with state-of-
the-art methods with much faster computing speed and low-
er GPU memory consumption.
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